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Modified Mathieu functions for radial Schrodinger equation 
with polarization potential: reliable numerical algorithms 

D B Khrebtukovt 
Department of Physics and Astronomy, University of Nebraska, Lincoln. Nebraska 
6858&0111. USA 

Received 11 November 1992 

Abstract. The new numerical approach to calculation of modified Matbieu functions is proposed. 
These functions play an important role in theodes of electron scattering hom (highly) polarizable 
atoms.likeWi. Thealgorithms wedevelopedshowvelyhighaccuracyina widerangeofenergy 
and polarizability, which are the two principal parameters ofthe problem. The numerical scheme 
does not lose the accuracy in the so-called 'unstable' regions, where the characteristic exponent of 
Mathieu functions becomes complex. This stability makes possible the analytical continuation of 
these methods in the complex plane of p-eten. 

1. Introduction 

There are many physical situations when a neutral atom interacts with a charged particle 
and the resultant polarization of the atom plays an important role in transition'or scattering 
processes [1-4]. Accurately taking into account the polarization effects is essential for the 

charge-induced dipole part of the polarization potential. The aim of this article being the 
development of a new computational approach, we will not discuss the applicability of the 
dipole approximation, although such a discussion can be found in [l] and references therein. 

We attempt to build algorithms that will be stable in a wide range of parameters 
for quasianalytical solutions to the following radial Schrodinger equation (atomic units 
throughout): 

~ ~ realistic theoretical description of such processes. In this paper we will consider only the 

Only the case E =- 0 will be considered in this paper, therefore (1) describes the scattering 
of I-wave electrons with the energy E from neutral atoms with static polarizability a. An 
excellent theoretical treatment of this problem in terms of modified Mathieu functions was 
given by Holzwarth 111, but~we found that the numerical algorithms proposed in that paper 
become very inaccurate in the so-called 'unstable' region, where the characteristic'exponent 
is complex (see section 2 below). 

Very illustrative is the application of Mathieu function solutions of (1) to modified effective 
range theory (ERT) proposed by Fabrikant [2 ,3 ] .  In ERT the scattering phase shifts are given 
by 

M c + d  
tan& = -- 

M a + b  

t On leave from: A P Ioffe Physical Technical Institute of Academy of Sciences, 194021, St Petenburg. Russia. 
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The quantity M is irrelevant to our study, and the coefficients a, b, c, d match solutions with 
prescribed asymptotic behaviour at r + CO and r + 0: 

(3) 

(4) 

F(r, E )  - cos(&/. - d / 2 )  

G(r, E )  - sin(&/r - d / Z )  

when r + 0 

when r + 0 

where we have introduced k = m. 
The ERT phase shifts can be easily found by direct numerical integration of (1) with the 

initial conditions (3)-(6), and then one satisfies the matching conditions (7) and (8) (together 
with their derivatives) at some point ro, but this approach is only effective when E is real. 
On the other hand, if one is interested in the analytical structure of 5'-matrix in the complex 
plane of E, then the direct numerical integration becomes dramatically inaccurate because of 
growing exponents in the boundary conditions at r + CO. In this case the quasi-analytical 
solutions in terms of modified Mathieu functions can be used very effectively. 

2. Some formulae from Mathieu function theory 

Although there are many papers and books that deal with Mathieu €unctions (e.g. see [5]), in 
this section we will follow the article by Hoinvarth [ 11, because it relates these functions very 
closely to the scattering problems. First we introduce a new parameter f = ,E and change 
the function and variable: 

and (1) transforms into the form that proves to be the most usefult: 

The two linearly independent solutions to (11) can be written as 

m 

(12) +(Z+2n) Mi,(x)= Cn(~)x 
n=-m 

Substituting (12) into (11) one obtains the recurrence relations for coefficients C,(S): 

t Changing varihle x = err one can obtain the classic form of modified btbieu equation, but we do not need it in 
this paper. 
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which is an infinite homogeneous system of linear algebraic equations and the determinant of 
it must be zero in order to have a non-trivial solution for the constants C”(r). This condition 
determines a unique value of the ‘characteristic exponenl’ r .  

Althoughrepresentation (12)really solvesthe radial Schrodingerequation (l), it is not very 
convenient in computations and it does not explicitly show the asymptotic properties of the 
solution at r --f 0 and r + 00, which are usually needed in the scattering theory. Therefore, 
the Bessel product series representations are most widely used, of which we will cite only this 
one: 

m 

J g i A r )  = (-1)”C,(s)Ji(,+.)@)Ji,(b) (14) 
n=-m 

where a = max(kri f / r )  and b = min(kr, f / r ) .  Bessel functions of these arguments ensure 
rapid convergence of the series for all values of r. 

The two representations (12) and (14) are related in the following way: 

Noting that M+,(x = 1) = M-,(x = l), the ratio of constants K - / K +  can be determined 
from the Bessel product representation (14): 

~ ~ 

We~can use the asymptotic form of Bessel functions (see e.g. [6]) and the normalization 
condition CO(T) = 1 to get the asymptotic forms of M+,(x) 

M*,(x) - K * e c o s ( k r  T &/2 - n/4) whenr + CO (18) 

M+,(x)  - K r ~ c o s ( f / r k t n r / 2 - n / 4 j  whenr -+ 0 .  (19) 

To  finish^ up the review of modified Mathieu functions a few remar& on ‘characteristic 
exponent’ r are in order. It can be shown (see e.g. 151) that the expression for 5 can be written 
as 

(20) . 2  sin nt/2 = + A f ( t  = 0) 

and to make the solution unique one requires 

s - + l + i  whenkf + O  (21) 

where Af is the determinant of linear system (13) (called ‘Hill determinant’). It is evident 
from (20) that t is real, if 0 < Af(t  = 0) < 2, but when A’(t = 0) c 0 or A’(r.= 0) > 2 
the characteristic exponent t becomes a complex number?. The very remarkable feature of a 
complex s is that its real part is always an integer number. 

t The region where r is complex is often d e d  ‘unstable’ 
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3. The new numerical algorithms for Mathieu functions 

It was shown in the previous section that one can find the solution to (1 1)  by the following 
consecutive steps. 

e Find the ‘characteristic exponent’ t. 
Solve the system of equations (13) for coefficients C“(r). 
Use series representation (14) or (12) to calculate Mathieu function. 

The usual way to proceed (see e.g. [I]) is to calculate t using (20) and then find C.(t) 
by solving the continuous fractions associated with recurrence relation (13). In this approach 
one uses different matrices to satisfy the self-consistency condition of the system of linear 
equations and to solve this system; moreover, the different methods are used for this very 
closely connected tasks. Thiseventually leads to the loss of accuracy as parameterkf increases, 
especially in the ‘unstable’ region. 

To remove this drawback we propose to use the same matrix to find t and to calculate C,. 
and to solve both problems using the same method. Our inshment in implementing this 
program will be the Lu-decomposition, whose definition and some useful (though not very 
well known) properties are described in appendix. 

First of all, we notice that the contribution of the non-diagonal elements in (13) falls off 
as l / n 2 ,  so we can find the maximum number from the condition that the absolute values of 
the non-diagonal elements are equal to small quantity E:  

nmx= ~ J l ( ~ + ~ ) z + + f / E l + ~ T ~ .  (22) 

This condition ensures that omitted non-diagonal elements are less than E,  and by changing 
this parameter one can check the convergence o f  the calculations. Now we can calculate the 
determinant of the set of equations (13) taking into account rows which are between -nmW and 
+nm. Because of the tridiagonal character of the associated matrix the Lu-decomposition 
gives a very simple recursion formula for the determinant 

where 

Using (22), (23) and (24) and the fact that limn+*- d, = 1, it is easy to show that the relative 
error of Dnmx( t )  calculation can be estimated as 

The ‘characteristic exponent’ is equal to the zero of Dn-(t), which can be easily found 
numerically with the solution of (20) serving as a convenient initial approximationt. The 

t Although (20) is a m ,  the numerical solurion for r loses accuracy in the ‘unstable’ region. While being close to 
thecorrect value, Ihis numerical solution M not be made accunteenough to ensure the self-sufficiency of the system 
of the linear algebraic equations for the coefficients Cn(z), but it is quite satisfactory as an initial approximation. 
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accuracy of the z calculation is chosen to be equal to E ,  which means that the iterations go on 
until 

The additional absolute error due to the imprecise calculation of D,, (z) can be estimated as 
follows: . j  

which shows that the calculations are expected to be stable and with the accuracy of the order 
of magnitude of E .  

We have to find C,(r) now, and for this purpose we choose Co(r) = 1 and remove the 
equation number 0 from the system (13). We are left with two independent inhomogeneous 
systems of linear algebraic equations 

A- .  C- = b- (25) 

A + .  C+ = b+ (26) 
where 

c; = Cn,-+{-1(r) (27) 

c,' = Cn,+i-1(5) (29) 
b+ = b+&,,, . (30) 

b; = b-&,nwx (28) 

The equations have been rearranged so that in the vectors b* only the last element is not equal 
to zero. It is done in order to make the equations with lower triangular matrix easy to solve 
analytically. 

Now the Lu-algorithm for coefficients Cn(r) -can be written as an explicit series of 
arithmetic operations. First we perform the Ludecomposition of matrices A* 

+ 
(35) 

(36) 
In all these formulae i changes from 2 to n-. After the coefficients C,(r) have been found 
we can verify the consistency of our calculations by checking that the eliminated equation 
number 0 really holds, that is 

S",, 
ci1 = -7 

dn,, 
c*i = -cii-lu"m&+~ . ' 

k f  
9 - (1 + 7 )  

(C,(t) + C_l(t))  = 0.  
1 2  

1 +  (37) 
~ _I 

The above condition is not trivial because C,(z) and C-l(r) are the solutions of the two 
absolutely independent systems of equations, and (37) can be satisfied only for the specially 
chosen quantity 5. 
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4. Application to effective range theory 

By comparing the asymptotic forms (3)-(6) with the asymptotics of Mathieu functions (18) 
and (19), we can write explicit formulaet for coefficients a, b, c and d: 

where 5 stands for the ratio K - / K +  which is given by (17). The quantity 5 becomes complex 
in the 'unstable region' and, for the tangent of the phase shift in (2) to stay real, 5 must have 
the absolute value equal to unity: 

K- - ~= exp(iq) 
K+ (42) in the 'unstable region' 

where cp is a real number. This property can be proved using the Bessel product 
representation (14), thetranslationalpropertiesofthecoefficients Cn(t)  (thatfollow from (13)) 
and the fact that the real part of r in the 'unstable region' is an integer number. 

Being of crucial importance for meaningful description of the scattering in the framework 
O f  ERT, (42) is very sensitive to the quality of numerical algorithms used in computations$ and 
therefore serves as a good test of accuracy. In table 1 we give the representative values of the 
parameter 'p in the 'unstableregion'. We present the results ofcalculations to 12 decimal places, 
which far exceeds the accuracy of reasonable physical assumptions in realistic applications, 
but demonstrates the convergence of this technique and can be useful for the purposes of testing 
the algorithm. 

The analytic continuations in the complex plane of parameters can be used to calculate the 
energies and widths of 3P resonances in alkali atoms in the framework of ERT. To do this we 
find poles of the S-matrix in the complex plane of k solving the following equation: 

tan& = -i (43) 

where the tangent of phase shift is given by (2). The width and energies for Rb, Csll and Kare 
presented in table 2 and can be compared with the results obtained by Fabrikant in [2] and [3] 
by the Breit-Wigner parameterization of phase shifts dependence on energy. 

The numerical approach presented in this paper was successfully applied to the calculation 
of alkali metal Rydberg state broadening cross sections in the ambient alkali vapours; the 
comparison with the experiment and the existing theoretical results is given in [4]. 

t Up to a common multiplicative faclor, which eventually cancels in (2). 
$ For example, we could not satisfy (42). when we vied to apply algorithms proposed in [l]. 
5 The analytic continuation is possible bec3use the algorithm converges well, conmiins only analytical functions md 
docs not use Such 'non-analytic' opemtions as the complex conjugation or calculation of the modulus. 
11 Whether lhere is a 3P resonance in Cs is an open question but for our purposes we consider only those panmeters 
that allow such a resonance lo exist. 
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lhble 1. Representative d u e s  of the parameten (D and c in the ‘unstable region’. The values 
obtained by Holzwarth [I] in the points on the margin of the ‘unstable region’ are marked by 
asterisks and can be compmd with our solutions. 

kf l r  (D 
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0.6945 
0.6945‘ 
0.7 
0.8 
0.9 
1.0 
1.5 
2.0 
3.0 
5.0 
1.671 
1.671’ 
1.7 
1.8 
1.9 
20 
2 5  
3.0 
4.0 
5.0 

3.245 
3.245* 
3.3 
3 5  
4.0 
5.0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
I 
1 
1 
1 
1 
1 
1 
1 
1 
1 

2 
2~ 
2 
2 
2 
2 

0.988769003448 
0.9985- 
1 - 0.0552373989343i 
1 -0.248 8150W392i 
1 - 0.349538893 lOOi 
1-0.42788201828Oi 
1 - 0.693 815926261 i 
1 -0.866578516158i 
1 - 1.086034496318i 
1- 1249458897491i 
1.011 991 263560 
1.0124* 
1 +O.O753799140127i 
1 f0.159521698724i 
1 + 0.211 207756511 i 
1+0.251080789166i 
1 +0.374487532841i 
1 + 0.426688 8248877i 
1 + 0.270319381 6154i 
2-0.4315812050738i 
2.012824202518 
2.013 1’ 
2 + 0.095376513656 1 i 
2 + 0.209931024180i 
2 + 0,3735787542691 
2 + 0.596433605534i 

~ - 
- 

-0.064 487 717 737 0 
-0.286449838 196 
-0.400 254 582 634 
-0.490281 612366 
-0.832547780933 

-1.596813426531 
-2.395441 337495 

- i .I 12 777 627 295 

- 
- 
3.013 405 406503 
2.886811 739097 
2.824433 107077 
2.786805309406 
2.748963 407582 
2.812429 335695 
3.046867675656 
3.033318259483 
- 
- 

-0.279532 182697 
-0.575711 765195 
-0.874731 639043 
-1.046757659204 

Table 2. The energies and widths of * resonances in alkali atoms as poles of the &ma&. The 
results of the Breif-Wlgner parameterization obtained by Fabrikanf are marked by asterisks (data 
for K m taken from [2]. Rb and Cs from [31). 

Atom (I M MeV) Rev) 
Rb 328 (-0.1507 t 0.1562E(eV))-’ 0.0232 0.0236 
Rb* 328 (-0.1507 t O.l562E(eV))-’ 0.023 0.025 
cs 402 (-0.09227 + 0.4021E(eV))-‘ 0.0124 0.00892 
Cs* 402 (-0.09227 + 0.4021E(eV))-’ 0.0126 0.009 1 

K 303 (-0.1065 + 0.1877E(eV))-’ ~ 0.0189 0.0153 
K* 303 (-0.1078+0.1957E(eV))-’ 0.019 0.016 

5. Conclusion 

We have demonstrated the improved algorithmic approach to the calculation of various physical 
parameters using the modified Mathieu functions. The method is fully compatible with the 
previous results for small values of kf. For instance, we were able to reproduce table 1 in [l] 
apart from one obvious misprint and discrepancies at the margins of the ‘unstable region’, 
where the previous algorithm begins to break down. 

Moreover, the new method serves as a reliable instrument for calculations in the ‘unstable 
. region’ where it was shown to satisfy the fundamental condition (42), which sets an important 
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checking point for any calculation that is supposed to have any physical sense at all. 
The simplicity and essentially arithmetic character of the proposed algorithm make it very 

easy to continue analytically into the complex plane of parameters. This property makes it very 
useful when investigating numerically the analytical properties of the S-matrix in the complex 
plane of energy and in applications where the calculations in the complex plane are necessary, 
for instance in the adiabatic collisions with participation of highly polarizable atoms. The 
results of calculations of the S-matrix poles given in table 2 show very good agreement with 
the conventional methods of computation. 
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Appendix. Lu-decomposition 

Although the Lu-decomposition can be found in any linear algebra textbook or manual of 
computational methods, for example [7], we think the short review of this method will greatly 
facilitate understanding and application of the algorithms expounded in section 3. 

Suppose we are to solve the matrix equation 

A . x = b  (AI) 

where A is a n n  x n matrix, z is a vector of unknown quantities, and b is some prescribed 
vector. The basic idea is to represent the initial matrix A as a product of two matrices 

A = L . U  

where L and U are n x n matrices, such that 

L i j = O  if i < j  U , = O  if i z j  U i i = l .  (A2) 

The matrices L and U are lower and upper triangular respectively. The condition (A2) is 
equivalent to det(U) = 1 or det(A) = det(L) and makes such a decomposition of A unique. 

The Lu-decomposition is ?erformed as a step-by-step transformation of the matrix A. On 
the Zth step only columns from 1 + 1 to n and rows from 1 to n are being changed by the 
following algorithm: 

Afj ('I - - -A, .  ('-')/A{-') I for I + 1 < j < n (A31 

A!? v = A!,.-') 11 - A;-~)A:)  for I + I < (i, j )  n (A4) 

where A") represents the matrix A = A(') after the Ith transformation. After n - 1 
transformations have been performed, the diagonal elements of the matrix A("-') and all 
the elements below diagonal form the matrix L, and all the elements above diagonal of A("-') 
give the non-diagonal part of the matrix U, and the diagonal part of U is given by (A2). 
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Once the Lu-decomposition is established, the solution of (Al) is easy to find subsequently, 
solving two equations with triangular matrices 

As a by-product one can easily calculate the determinant of the matrix A as a product of 
diagonal elements of L: 

Another very important property of the Lu-algorithm lies in the fact that it preserves the 
band structure of the mahix A. This means that if A has non-zero main diagonal elements, 
p non-zero diagonals above the main diagonal and q non-zero diagonals below the main one, 
the matrix L will have non-zero elements only on the main diagonal and q subdiagonals and 
U will have non-zero elements only on the main diagonal and p diagonals above it. This 
property makes the Lu-decomposition very useful when working with narrow-band matrices 
(e.g. tridiagonal as in this paper). 
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